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ABSTRACT 

We show that the extended Kalman filter (EKF) is guaranteed to be nondivergent 
under very general assumptions. Nondivergence as used here means that the 
magnitude of the estimation error of the EKF is no more than proportional to the size of 
the noises. We show that this is an important (and sufficient) property for closed-loop 
stability when an EKF is used as the estimator in a model-based controller. An 
important contribution of this paper is the connection of the state space and operator 
description of systems. 
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1. INTRODUCTION 

:,. 
. .  

The extended Kalman filter [J] was introduced as an engineering approximation to 
a very difficult theoretical problem: How does one estimate the state of a nonlinear 
system from measurements of the output variables in the presence of disturbances? 
While the equations describing the exact optimal nonlinear state estimate can be 
written down [J, H, C,  FM, 4, they involve the solution of a partial differential equation 
(PDE) in real-time. While it may be feasible to compute the steady-state solution to a 
PDE with current technology and use the result in an application, evolving the 
conditional probability distribution by a PDE in real-time is still computationally 
unrealistic for any but the most simple systems. 

Because the optimal nonlinear state estimate was so difficult to calculate, 
approximations were introduced. One of these was the extended Kalman filter (EKF), 
so called because of its use of the Kalman filter [KB] force-fit on the nonlinear system, 
by linearizing about the current state estimate. Many successful applications of the 
EKF were described [AWB, SS, et all, even though there was little theoretical work 
explaining the reasons for its success. In this paper we show that the the success of 
the EKF was not due just to luck, but to some fundamental properties possessed by the 
EKF. In particular, we will show that the EKF is guaranteed to be nondivergent under 
very general assumptions. A nondivergent estimator [SA11 is one for which the size of 
the estimation error is no more than proportional to the size of the process noise and 
measurement noise. As first shown in [SAl], a nondivergent estimator can be used to 
create a model-based nonlinear control system without loss of stability when the 
estimated state is substituted for the actual state in a stabilizing state-feedback 
function. 

The conditions which guarantee that the EKF will be nondivergent are roughly that 
the nonlinearities have bounded slope, the inputs enter additively, and the system is 
M-detectable. A system is Mdetectable if a model-based estimator exists that is 
nondivergent for a full rank input matrix (not necessarily the output matrix). Note that 
the nondivergence we discuss here is not small-signal in any way; estimation errors 
will be shown to be stable for any size of disturbance. 

The rest of the paper is organized as follows: Section 2 presents background 
material on the model to be used, operator notation, and basic definitions. Section 3 
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presents the main result concerning the nondivergence of the EKF and Section 4 
presents the conclusion to the paper. The proof of the main result appears in the 
Appendix. For a more detailed discussion and additional properties of the EKF and 
other observers, see [Gl]. 

. 
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NOTATION 

.- - "is defined as" 
I The identity matrix or operator 
0 The zero matrix or operator 
R The real numbers 
Rn space of ordered n-tuples of real numbers 
R+ The non-negative real numbers 
v g  The gradient matrix of the function g: Rn+Rm 
1x1 The Euclidean norm of the vector x, e.g (x T x) 1/2 
IAI, ~max[A] The maximum singular value of the matrix A 
~min[A] The minimum singular value of the matrix A 
Lp signal space with elements of finite p-norm 
L extended signal space 
PT truncation operator 
llxllp p-norm of signal x(-) as a member of L 
11x1 I p,z truncated p-norm of signal x(-), = llPZxllp 
I1 (XlY 1 I I ' see section 2.2 
cf, plant dynamics operator = [S1 - F1-l 
cf,(t,z) state transition matrix for a linear time-varying system 
b B  (AzB) the matrix A-B is positive (semi)-definite 
AT,xT the transpose of the matrix A or vector x 
P the plant operator 
K the compensator operator 
T the loop operator 
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2. BACKGROUND 

We assume that our plant model is of the form 

x(t) = f(x(t)) + Bu(t) ; ~(0) = 0 (2.1 a) 

where x(t)E Rn is the state, u(t)E Rm is the input, and y(t)E Rm is the output. B is an nxm 
matrix and C is an mxn matrix. We assume that the nonlinearity f: Rn+Rn is at least 
twice continuously differentiable, with f(O)=O, and that there exists Mf such that 

IVf(x)l I Mf for all x E Rn (2.2a) 

(2.2b) 

In (2.1) the initial condition for the state is zero. In general this is how we will deal with 
differential equations from an input-output viewpoint. If the system is controllable, then 
clearly we can access all possible behavior of (2.1) by first traveling to a desired state, 
then starting our observation. When we use Lyapunov techniques, we will use a 
nonzero initial condition for the plant model. 

The model (2.1) is more general than it might appear. Through changes of state 
variables and/or the addition of integrators, more general models can be transformed 
into the form (2.1). References [Gl, HSM, KIR] have more information on this topic. 

We now consider the I/O viewpoint for systems, in which a system is thought of as 
rule for mapping inputs into outputs. Here inputs and outputs are entire signals, Le. 
trajectories, not just elements of Rn. We call a set of signals a signal space, and a rule 
for mapping one signal space into another an operator. Since we want to be able to 
make quantitative statements, we need a way of assigning sizes to these signals 
(elements of a signal space). One way to do this is by the use of norms. 
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Definition For llpc-, we define the p-norm of a signal x:R++Rn 

0 

For p=- we use 

llxll- = SUP Ix(t)l - (2.4) 
t 

These definitions of course are not finite for all functions x: R++Rn. We will restrict the 
signals on which we apply these norms as follows. 

Definition Lnp is the set of all signals x: R++Rn for which Ilx(t)llp 
is finite, i.e. 

In functional analysis, values of p are usually considered for the full range [l ,-I. In this 
paper we will be concerned primarily with the cases for p=2 and p=-. Since we 
restricted the set Lnp, it is not quite large enough to deal with all of our system theory 
questions because it does not include any signals that "blow up" , or grow without 
bound. Without these types of signals, we cannot discuss unstable systems, and thus 
stability itself remains inaccessible. To be able to handle these growing signals, we 
must extend the set LnP by the following mechanism. For more details see [Z, S1, Wl]. 

Definition The truncation operator P, is defined by its operation on an arbitrary 
signal x: R++Rn as 

Definition The extended space Lnpp,e is the set of signals whose truncations lie in 

i.e . 
L"p, 
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We will frequently drop the superscript n, as the dimension of the underlying vector 
space is usually quite aparent. In addition, we will want exclude some signals with 
very bizarre nonphysical behavior. For example, consider 

I t-1'4 t < 1 

which goes to infinity at t=O and in addition belongs to L2 . We eliminate this type of 
non-physical signal by only considering the set L-,e for the rest of this paper. For 
simplicity, we define the set E: = h.,,,e. We will not be concerning ourselves with the 
behavior of signals on sets of zero measure, as this does not affect smooth physical 
systems. 

Remark: The above mathematics is just one possible way to utilize the concepts of 
extended spaces and so on. In fact, extensions to discrete time systems are quite easy 
[Z, Sl]. We restrict ourselves here in order to give a more concrete flavor, reduce 
technical restrictions, and to tie results to the state-space domain. 

example, we write 
The operator description of a nonlinear system is simply a mapping P: L4L. For 

y = P u ;  u,y& (2-9) 

to mean that the input u produces the output y. Remember that u and y are not points 
in Rn but are entire trajectories in Rn, Le. elements of IL. The value of the response of 
the system P to the input u at time t is given by 

(2.1 0) 

We will assume that PO=O for all operators we will be considering. This does not cause 
any loss in generality, as the zero input response can be dealt with separately. We 
define the addition and composition of operators in the expected way: 

(A+B)u := AU + BU 
ABu := A(Bu) 

We are now able to extend the notion of size to signals in IL and to operators: 
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Definition: The truncated ILp -norms of XE IL are 

z 

0 
IlXllP,T : = IlPTXllP = [ I Ix(t)lP dt It@ ; P<- 

Definition: The ILp -norm, or gain, of an operator (system) is 

I I PI I p,z 

I lu I I p,z 
IlPllp := SUP 

(2.1 3a) 

(2.1 3b) 

(2.1 4) 

where the supremum is taken over all UEIL and all PO. If the type (i.e. p) is not 
specified, then results hold for all p-norms, consistently throughout a discussion. In 
words, the gain is the largest possible amplification in signal size that can be achieved 
over all possible inputs. Similarly, we have 

Definition: The $ -incremental gain of an operator is 

(2.15) 

where the supremum is taken over all u1, u ~ E ~ L ,  upu2, and all PO. 

Definition: An operator (system) is P is $-stable if it has finite gain, i.e. llPllp <+-. 

Definition: An operator P is Lp-incrernenta//y stable if it has finite incremental gain, 
i.e. 

Note that a system P is stable if and only if there exists a constant k such that 

and that the smallest such k is the gain llPll of the system. 

(2.16) 

Remark: We define stability here because there is no standard definition. Other 
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and not requiting the output to have zero norm when the input is zero. Note that in the 
time-invariant linear case the types of stability above are all equivalent to the standard 
one. 

As we will occasionally have need to discuss the size of the vector z=(x,y), with 
ZE Rn+m, XE Rn, YE Rm, or the signal z=(x,y) with Z E L " + ~ ,  x d m ,  we clarify the issue 
by defining: 

(2.1 7 )  

(2.1 8a) 

l I(X~Y)lL,~ : = Ilxll00,z + llYIl00,z 

Technically, this last definition is not consistent with the definition of a signal given 
previously, in the sense that if z=(x,y), we have 

(2.1 8b) 

(2.19) 

(2.20) 

with equality not guaranteed in general. To fix this we would have to redefine the norm 
of a vector in Rn just for the case. This is not worth it because the definition given 
above is sufficient for our purposes, since 

and we are here generally just concerned with the existence of bounds, not their exact 
value. 

We make one more shorthand notational definition: 

Definition: The closed-hall Bh is defined as the s i t  
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To simplify equations, we will now define a special nonlinear operator @ by the 
mapping from w to x given by 

i(t) = f(x(t)) + w ; x(0) = 0 (2.23) 

and shown in the block diagram of figure 2-1. if we let F be the nondynamical operator 
defined by 

(FX)(t) : = f(x(t)) (2.24) 

and S be the integral operator, we can write 

We can now see the usefulness of 0; our plant (2.1) can now be written in compact 
form 

y = P u ;  P=COB (2.26) 

This operator representation of our plant will be very useful throughout the rest of the 
thesis. Note that for (2.26) to hold, neither B nor C need be linear. 

. 
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....................................................... 

Figure 2-1 : The @ Operator 
We now make some definitions based on [BJ] for observability and controllability. 

Definition: We say that [A(-), C(.)] is unifotmly observable if, for the linear-time 
varying (LTV) system 

there exist constants a,P,o such that the observability grammian 

(2.27a) 
(2.27b) 

W(t,,tl) : = I' @T(s,tl)CT(s)C(s)@(s,tl)ds 
b 

(2.28) 

is bounded uniformly 

PI > W(to,to+o) > d > 0 (2.29) 

for all toe R,. Here 0 is the state transition matrix :or the linear system (2.27a). 

Similarly, we say that [A(.), B(.)] is uniformly controllable if for the linear 
time-varying system 
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there exist constants a, p, and (r such that the controllability grammian 

C(t0, t l )  : = 1' Q(t1, s)B(s)BT(s)aT(tl ,s)ds 
t0 

is bounded uniformly 

PI > C(to, to+o) > aI > 0 

(2.31) 

(2.32) 

for all to€ R,. 

Remark: i f  we make the further assumption that A(t) 2 M for some constant M, then the 
upper bounds in (2.29) and (2.32) are satisfied automatically. Recall that for constant 
linear systems, the crucial part of observability and controllability are the lower bounds, 
i.e. the positive definiteness of the grammians. 

Definition: A nonlinear system [f,C] of the form 

x(t) = f(x(t)) + Bu(t) + Bw(t) 
y(t) = Cx(t) + d(t) 

(2.33a) 
(2.33 b) 

is L-observable (for Linearization observable), if uniformly for every possible trajectory 
x(*)E L, the linearized system [Vf(x(-)), C] is uniformly observable. Similarly, the 
nonlinear system [f, B] is L-controllable (for Linearization controllable) if [Vf(x(-)), B] is 
uniformly controllable, uniform across all trajectories ~ ( 9 ) .  The uniformity across 
trajectories here means that the bounds a,p in the definitions of uniform observability 
and controllability are the same for all x(-)E L. 

We would now like to relax the condition of observability to detectability, but first we 
must define what is meant by a "good" estimator. The terminology is due to [SAl, Sl]. 

Definition: We say that 

. 
= F(y,u) is a nondivergent estimate of the state x Of 

X(t) = f(x(t)) + BU(t) + BW(t) (2.34a) 
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I y(t) = CX(t) + d(t) (2.34 b) 

if the mapping (w,d) -$ e = x -  i is stable uniformly in u. Here F is the dynamical 
operator representing the estimator with inputs y and u, and w and d are disturbances 
that are considered deterministic (but of course unknown to the estimator). To be more 
precise, we say that the estimator is nondivergent with respect to a specific norm if the 
mapping (w,d)+e is stable with respect to that norm. 

One reason that this definition is useful is that a nondivergent estimator can be 
used in a closed-loop configuration to stabilize a system. Consult Figure 2-2. 

Theorem 3.1: (Separation Theorem [Sl]). If g(-) is a stabilizing state-feedback 
function, i.e. if 

i(t) = f(x(t)) - Bg(x(t)) + BW(t) (2.35) 

is stable WX, and 

and if i=F(y,u) is any nondivergent estimate of x, then 

x(t) = f(x(t)) - Bg( i(t)) + Bw(t) 

(2.36) 

(2.37) 

is stable (w,d)+x. Here we mean stability with respect to the same norm used for the 
stability of (2.35) and for the nondivergence of the state estimate i. 
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0 

Figure 2-2: Separation of Estimation and Control 

Proof: The closed-loop system is 

X = f(x) - Bg( i )  + BW = f(x) - Bg(X) + B(g(X) - g( i )  + w). 

Since g(x) stabilizes the system, there must exist a k l  such that 

Since F is a nondivergent estimator, there must exist k2 such that 

(2.38) 

(2.39) 

(2.40) 

(2.41 ) 
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and so the system is closed-loop stable. 

Remark 1 : This theorem now allows us to design separately a stabilizing 
state-feedback function and a nondivergent estimator, with the knowledge that we can 
put them together and be guaranteed a closed-loop stable system. Note that the 
stability is not just from a single input, but from both "inputs" (w,d) simultaneously. This 
guarantees that there will be no unstable hidden modes in the closed-loop system, Le. 
it rules out the analog of right-half plane pole-zero cancellations between the 
compensator and plant in linear systems. This is required (and sufficient) to allow a 
practical command following system to work. 

Remark 2: Ir; the linear case, the stochastic optimal control 
(Linear-Quadratic-Gaussian, or LQG) problem solution [KS] decouples into an optimal 
estimation problem and an optimal state-feedback control problem, sometimes refered 
to as the certaintly equivalence property. We do not mean to imply that the nonlinear 
stochastic optimal control problem [FR] has a similar property; only that we can 
stabilize nonlinear systems by this separation process. 

Remark 3: In the literature, there exist many tests for stability of a closed-loop system 
[J, S1, W1, S2, and many others]. All of these are based on versions of the small-gain 
theorem and/or passivity theorems. The problem with any of these tests is that they 
require that either one or both of the compensator and plant must be open-loop stable. 
Since there are some linear systems which cannot be stabilized with a stable 
compensator, we would expect the same to be true for some nonlinear systems. Thus 
these tests would be useless in trying to determine the closed-loop stability of a 
proposed compensator for such a plant. The separation theorem above has no such 
restriction. It works equally well on open-loop unstable plants and compensators. 
Thus it could be viewed as a typed of stability test fundamentally different from 
pre-existing ones of the small-gain or passivity type. 

Remark 4: If the condition (2.36) is not satisfied globally, we can still make a 
small-signal version of the conclusion. Equation (2.36) should hold (if g is smooth) in 
any bounded subset of Rn, and thus if we put the correct bounds on the size of the 
inputs w, r, and d, we can make sure that x, 
allows us to guarantee closed-loop stability for inputs with magnitudes below some 

remain in that bounded subset. This 
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specific value. 

Definition: A nonlinear system [f,C] of the form (2.33) is M-detectable (for 
Model-based detectable) if there exists a matrix functional H(t,y(s), u(s), Ossct), 
depending on the past of y and u, such that for any matrix B in our plant model (2.33), 
the state estimate given by 

X(t) = f( i )  + BU(t) + H(t,y(S),u(s), 01~4) [y(t) - C i(t)] (2.42) 

is nondivergent, uniformly for all matrices B, Le. for all BE Rnxp and for all p. In 
addition, the functional H must be bounded in time, and continuous, not necessarily 
uniformly, with respect to y(.). This means that given E, z > 0, there exists a q ( ~ , z )  such 
that if 

(2.43) 

Remark: The matrix function H(.) in (2.42) can depend in any way on the past of u 
and y. Thus it includes the optimal infinite-dimensional observer [J, H, C, FM, K], as 
well as the extended Kalman filter, and a host of other approximate observers. 
Additionally, the observer (2.42) must be nondivergent independent of B. This is in 
keeping with the linear theory, where choice of B matrix does not influence 
observability. Thus M-detectability is one of the most fundamental definitions for 
detectability that one can make, since it is operational in nature: If the system is not 
M-detectable then we cannot find an estimator that will be nondivergent for all choices 
of the B matrix. In this sense it is analogous to detectability in linear system theory. 

. 
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3. MAIN RESULT 

The extended Kalman filter (EKF) was proposed as an engineering extension [J] to 
the popular Kalman filter for linear systems [KB]. The EKF as we will use it for the 
nonlinear system (2.1) is 

x(t) = f(i(t)) + Bu(t) + H(t)[y(t)-Ci(t)] ; i ( 0 )  = io (3.1) 

H(t) = Z(t)CT 

q t )  = Vf( i(t)) q t )  + Z(t) {Vf( i(t))}T + E - Z(t)CTCZ(t) (3.3) 

X(t0) = zo ; to < 0. (3.4) 

The symmetric and at least positive semidefinite matrix E is one of the design 
parameters of the EKF. We shall frequently refer to the square-root of E, written Ell2, 
defined as the full-rank matrix r such that 

The other parameters of the EKF are the initial time tocO and the initial state for the 
covariance propogation equation (3.3). The results reported here will require a 
"start-up" period for the EKF if it is to be initialized with arbitrary h; that is, we must 
have to<c for some cc0 and (3.1) starts at t=O. Obviously, we could start the EKF at 
to=O if we selected an appropriate Eo. This is the procedure that would be used in 
practice. The standard EKF noise parameter 8 has been absorbed into E here for 
simplicity, without loss of generality. 

The rationale for the EKF was that if the noises were small enough, x = k  and one 
would be justified in using the standard time-varying Kalman filter because (3.3) would 
then be a good approximation of the true error covariance. It turned out that the EKF 
was very good in practice and many applications were reported of the EKF and its 
variants, including (AWB, SS]. As we shall show, this was not just pure chance, but a 
consequence of certain guaranteed properties possessed by the EKF. 
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We now state our main result pertaining to the EKF: 

Theorem 3.6: Let f obey the gradient restriction (2.2). Then if 

and one of the following holds: 

(a) [f,C] is M-detectable and [f, 4/21 c is Lcontrollable. 
(b) [f,C] is L-observable and [f, Z1/2] is Lcontrollable. 
(c) Z(t) is bounded in time, Le. there exist a$>O such that 

then the EKF (3.1-3.4) is a nondivergent estimator for the nonlinear system (2.1). 
Furthermore, (a) implies (c), and (b) implies (c). 

Proof: See the Appendix. The Lemmas in the proof can be read for a sketch if the 
reader is not interested in the details. 

Remark 1 : This is a very useful theorem, as it says that if any nondivergent estimator 
exists, then the EKF will also work for control purposes. Note that this nondivergence 
is global, as it says nothing about the noises w,d being small. Note further that the 
condition (3.6) can be easily satisfied by picking Z positive definite, as can the 
condition for [f, Z1I2] being L-controllable. When Z is positive semi-definite the 
conditions (3.6) and [f, Zli2] controllable are more difficult to check. It would seem that 
it should only require some form of stabilizability for [f, Z1j2], where we would require 
the existence of a stabilizing state feedback function, but at this time this is not known. 

Remark 2: One should be able to prove a stochastic version of this theorem, perhaps 
by using a norm llxll that was related to the covariance of x(t). In addition, due to the 
connection of the EKF with the linear Kalman filter, one would also expect some result 
saying, in effect, that no other filter has a better local estimation error covariance. 

Remark 3: If one were optimistic, one would be tempted to draw the conclusion that a 
dual result to this EKF nondivergence result could be made, that is, using some form of 
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the time-varying Linear-Quadratic regulator problem [KS], one could derive 
guaranteed stable state feedback functions for nonlinear systems without having to 
solve partial differential equations. Unfortunately, this cannot work, as the control 
matrix Riccati equation must be propagated backwards in time, and we do not know 
what our linearized trajectory will be at any time in the future. We are lucky in the 
filtering case, as the Kalman filter runs fonvard in time, and we do not need to know A(t) 
for any time in the future. 

. 
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4. CONCLUSION 

We have show that the EKF possesses a remarkable guaranteed property, namely 
that it is nondivergent under some very general assumptions. This property was 
shown to be useful in a nonlinear control context, as it allows us to build model-based 
feedback controllers for nonlinear systems, which are guaranteed to be closed-loop 
stable. 

Future work in this area will include the extension of these results in three areas: 

1. The condition requiring controllability through Eli2 should be able to be relaxed to 
something approximating requiring the existence of a stabilizing state-feedback 
controller for [f, E1/2] (i.e. M-stabilizability). 

2. Since the EKF is essentially a first order approximation, perhaps the iterated 
extended Kalman filter [G2] or other higher-order filters might prove nondivergent 
under functions f(.) with some polynomial behavior of degree higher than one. 

3. It seems likely that the EKF should have some guaranteed stochastic properties, 
especially in the area of local optimality. Since no filter can be better for small noises 
(and thus small errors), we should be able to prove some optimal local properties. . 
Then by the extension trick used in the proof of the main result here, we might be able 
to extend the optimality to a more global property. 

. 
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APPENDIX A: Proof of Main Result 

We will first require the following result connecting Lyapunov stability and 
small-signal Lp-stability, modified slightly from [VV, BS]. 

Lemma A.1: Let 

X(t) = f(x(t), t,O) ; x(0) = xo (A.1) 

be Lyapunov stable in the special sense that there exists a differentiable function v(x,t) 
and positive constants a1 ,a2,a3,a4 such that for all XE Bh, tZ0, 

"1 1x12 5 W t )  s a2 1x12 . (A.2) 

W , t )  

ax 
a4IXI - - 

. 
The derivative in (A.3) is a total derivative, along trajectories of (A.1). 

Further suppose that there exists constants kf, E, 6 such that 

Then the system u+x described by 

X(t) = f(x(t),t,u(t)) ; x(0) = 0 (A.6) 

is small-signal Lp-stable for all PE [l ,-I, that is, there exist constants yp and c, such 
that 
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Furthermore, if (A.2-A.4) hold for all XE Rn and (A.5) holds for all Mf, Mu, then we 
can take c, = +-. 

Proof: See [BJ, KS]. 

(c) implies EKF nondivergent For linearized EKF system 

Then (A.10) and (3.7) imply 

and along trajectories of (A.9) with p(t)=O: 

i(S(t),t) = - 1 6 T 1  c- (t)i(t)Cl (t)t + 5 T x -1 (t)i, 
2 

= - 1 6%-1 (t) { i ( t )  - Vf(x(t)) C(t) - C.(t)VfT(x(t)) + 2C(t)CTCZ(t)} r l ( t )  5 
2 

= - 1. ST C-1 (t) {Z+ C(t)C’CC(t) } C-1 (t) 5 
2 

(A.11) 

(A. 12) 

(A. 1 3) 

. 
Since (A.11 -A.13) hold for all SE Rn, we can apply Lemma A.1 to conclude (A.9) is 
uniformly L2 and L-stable (with SO=O) for all trajectories x. Let the associated gain 
be k. 
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Now, we would like to apply a result from [Wl] that says that a system is 
incrementally stable if its linearization is uniformly stable, but we have a slightly 
different form here, so we must prove our result directly, following [DV]. 

We have 

e := j ;  - x = f(x) - f( i )  - H(t)Ce + Bw - H(t)d 

= Vf( ;(t)) e + g( ;,e) - H(t)Ce - H(t)d + Bw 
where 

g( i , e )  = f( ;+e) - f( i )  - ~ f (  i(t))e . 

Letting <p be the state transition matrix for (A.9), 

where we assign 

(A. 1 4) 

(A. 1 5) 

(A. 1 6) 

p(t) := - H(t)d(t) + B w(t). (A.17) 

Since (A.9) is L,-stable, we have [DV] that there exists an N such that 

1 lQ(t,z)ldz e N Vt . (A. 1 8) 
0 

The derivative condition on f (2.2) implies [DV] that given an e 0  there exists a 6m(E) SO 

that 
. 
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Select e c 1/N. Then if 

1 -EN 

k 
P IC1 lldllz + IPI llwllz I - 6, (E) 

we have from (A.16) 

and 

(A.20) 

(A.21) 

(A.22) 

and 

(A.23) says that if d,w are small enough (A.20), we have Lp-stability from noises (d,w) 
to the estimation error e (A.23). In other words, we have proven that the EKF is 
small-noise nondivergent. We now extend this result to any size noises by the 
following trick. 

Let d , w d  and ZE R, be arbitrary. Let 

which is finite. Now pick an integer n large enough so that 

(A.24) 

(A.25) 

Let the EKF be given by the function 

2 4  



i = F(Y,u). 

Clearly, 
x = F(yd, U+W) 

because this is the zero-noise case. 

Then 

by (A.23), which we can apply because 

II 1 P IC1 ildll-,T + PI i i~lL,~I l  s LEN sm(d 
n k 

(A.28) shows that the EKF is nondivergent. Q.E.D. 

(A.28) 

(A.29) 

(b) implies (c) We use the following result of Bucy & Joseph [BJ, Chapter VI for 
linear time varying systems. 

Lemma A.2: For the time-varying linear system [A(-), B(.), C(- ) ]  and the associated 
Kalman filter 

Z(t) = A(t)Z(t) + Z(t)AT(t) + Z - Z(t)C(t)'c(t)Z(t), (A.30) 

(A.26) 

(A.27) 
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(a) if [A(.), C(-)] is uniformly observable, then for all t > t0+q where 0 

is the interval of observability, and for all Eo 

Z(t) 2 [ w-1 (t, t-o) + C(t, t-0) 1. (A.31) 

(b) if [A(-), El’* is uniformly controllable, then for all t > to+c, where 0 
is the interval of observability, and for all Zo, 

[ c-1 (t, t-0) + W(t, t-0) 1-1 I q t )  (A.32) 

Proof: See [BJ]. Q.E.D. 

Now, since W and C are uniformly bounded by hypothesis across all time-varying 
systems (Le. for all x) we obtain uniform bounds on E(t), and thus by (c) of 
Theorem 3.1, the EKF is nondivergent for to < -G. 

(a) implies (c) This is the hardest proof of the theorem; it is also the most significant 
result. We proceed by a series of lemmas. Readers not interested in the details can 
scan the lemmas for a sketch of the proof. 

Lemma A.3: For all trajectories z(-)EL that can be achieved by 

Z(t) = f(z(t)) + u(t) ; z(O)=O, (A.33) 

where [f,C] is M-detectable, there exists a time-varying matrix H-(t) that makes 

ts(t) = [Vf(z(t)) - H*U) c1w + v(t) 

I--stable, uniformly for all z(.), i.e. there exists b o  such that 

(A.34) 

. 
ll~lloo,~ I k l lVl l00,~ (A.35) 

for all v,( satisfying (A.34) and for all TE R,. 
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Proof: Since the system [f,C] is M-detectable, there must exist a nondivergent 
estimator with associated matrix-valued function H(-,-,.) and continuity function ~ ( E , T ) .  

Since, by definition, this estimator must be nondivergent for all B matrices in the plant 
and the estimator with uniform gain k, we can select B=l. The estimator is given by 

x(t) = f( i(t)) + u(t) + H(t, Y(s),u(s), OSSC) [y(t) - C i(t)] ; x(O)=O . (A.36) 

For the proof of Lemma A.3, set d=O. Select an admissable pair u,z satisfying (A.33) 
and recall that the state is given by 

i(t) = f(x(t)) + u(t) + w(t) ; x(O)=O , (A.37a) 

y(t) = Cx(t). 
Let 

(A. 37b) 

as in (A.l5), where e=x-i is the estimation error. The estimation error obeys 

Fix ZE R+ and pick an arbitrary trajectory pair v,5 for the linearized system 

We now compute the gain for the linearized system (A.40). Pick 

E <  it 
and let 

(A.40) 

(A.41) 

(A.42) 

where 8m(E) is the continuity function for g(-,-) from (A.19). We now select w SO that 
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= Y Ut). (A.43) 

The w we will need is thus determined by comparing (A.39) and (A.40) and setting 

yv(t) = g( i(t),e(t)) + Wt). (A.44) 

Since 

IIeIL,T I Il~511-,T I sm(d (A.45) 

we have 

(A.46) 

(A.47) 

We now make use of the continuity of solutions of differential equatiosn with respect to 

parameter variations [CL, p.291 to obtain the desired final result. Let 

H*(t) := H(t, CZ(S), u(S), 0 9 4 ) .  (A.48) 

As we let E+O, we have pointwise in time, w+O, and thus 
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x+z  
y = c x + c z  
H(t,y(s),u(s), 0 ~ 4 )  + H*(t) 

Vf( i(t)) + Vf(z(t)) 

A 

x + x  

(A.49) 
(A.50) 
(A.51) 
(A.52) 
(A.53) 

with solutions of (A.40) satisfying (A.47) for all 00. Therefore, solutions of the limit 
equation (A.34) must obey (A.35) for v and for all -R+. Since the z(.) we originally 
picked was arbitrary, we are done. Q.E.D. 

Lemma A.4: The time-varying system (A.34) is uniformly controllable, with arbitrary 
interval of controllability, 0, uniform across all trajectories z. 

Proof: Let 

AF(t) = Vf(X(t)) - H*(t)C (A.54) 

where N exists by the bounds on Vf and H*. Select a X ~ E  Rn, with 1x1 I=1 and let 
x:R+ +In be the trajectory from 0 to x1 from t = to to t0+0 : 

Then v(t) must be 
x(t) = x1 (t - to) / 0 . (A.56) 

X(t) = X1/0 = AF(t)X(t) + V(t) (A.57) 

IV(t) I 5 (l+N) 1x11 = l+N (A.59) 

Now, we also have that 
. 

(A.60) 
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t0 

and by the Schwartz inequality 

t +Q 2 112 ~ 1 ~ x 1  [ IxlT@(to+o,r) I dr] [ ? v ( ~ ) d r ] l / ~  
to+a 

t0 t0 

or, using the controllability grammian, C, we have 

1 xlTC(to, to+a)Xl * (1 +N) 

and thus 

(A.61) 

(A.62) 

(A.63) 

and since N is independent of to, a, and z, we conclude that the system (A.34) is 
uniformly controllable. Q.E.D. 

Lemma AS: A uniformly controllable time-varying system 

is L,-stable if and only if it is exponentially stable, Le. there exist h,M such that 

and 

(A.65) 

(A.66) 

where Q, is the state transition matrix for (A.64). Furthermore, if the output is considered 
to be y=Cg, the system will be exponentially stable if the additional constraint of 
uniform observability is imposed. 
Proof: See [SA2]. For related material, see[AM] for the linear case, and pN2] for a 
treatment of the general nonlinear case. Q.E.D. 
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Lemma A.6: If A(t) - H*(t)C is exponentially stable, the covariance propagation 
equation for the linear filter 

driven by white noise with intensity Z, with unit intensity observation noise, is bounded 
as follows. 

S(t) = [A(t)-H(t)C]S(t) + S(t)[A(t)-H(t)CIT + E + H(t)HT(t). (A.68) 

implies 

and 

where h, M are the constants of the exponential stability. 

Proof: From standard linear theory [KS]: 

S(t) = @(t, to)So@T(t, to) + 1 @(t,~)=@~(t,~)dz, 
t0 

and we have 

-2h(t-to) 
IS(t)l SoM2.e + IEI M2 ] e-2h(tz) dz 

t0 

-2X(t-to) -2h( t-t o) 
<s,M~ e + 151 ~2 L [I - e 1 

21 
- 

-2h(t-to) 
SS,N~ e. +1Zl M2& 

From this we easily obtain the desired bounds. 
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(A.69) 

(A.70) 

(A.71) 

(A.72) 

Q.E.D. 



Lemma A.7: The Kalman filter for the time-varying system in the last lemma has a 
lower covariance than that given by (A.68). 

Proof: This is trivial as the Kalman filter has the lowest covariance at any time trfo of 
any filter [KS, G3]. For a intuitive explanation, we have from (A.68) 

S(t)=A(t)S(t)+S(t)AT(t)+Z+I H*(t)-S(t)CT][ H*(t)-S(t)CTIT-S(t)CTt,S(t). (A.73) 

The Kalman filter equation is 

C(t) = A(t)C(t) + Z(t)AT(t) + E - C(t)CTCC(t). 

and by comparing them, it is easy to see that 

(A.74) 

(A.75) 

Lemma A.8: Z(t) in the EKF is uniformly bounded from above for t&+o, where CT 

depends on the initial condition C(to)=Zo. This is independent of u, w, and d. 

Proof: From the last lemma, C(t) is bounded by S(t), which is bounded from above. 
Since the bounds on S(t) are uniform for all trajectories x, and all u,w, and d, we have 
the desired result. 

Q.E.D. 

Lemma A.9: C(t) in the EKF is bounded from below for tito+o if the system [f,2”*] is 
L-cont rollable. 

Proof: From the lemma A.2, we have 

[C-1 (to,to+CT) + w(to,to+o)]-’ C(t) ; t&+o . (A.76) 

As mentioned previously, W has an upper bound because A(t)=Vf(x(t)) is bounded. 
We shall compute that bound. Let 
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Therefore 
-N (t-to) 

W* toll s e 

and 

to+a 

t0 
W(to, to+a) = I OT(7, to+a)CTCO(z, to+a)dz 

YO 

I; 1. 
2N 

33 

. 
(A.77) 

(A.85) 

(A.79) 

(A.80) 

(A.81) 

(A.89) 



(A.83) 
2qN + 1 

where q is the constant of L-controllability or the uniform constant of controllability for 

the linearized systems. Thus X(t) is bounded from below for t&+a, by (A.81) and 

(A.82). Q.E.D. 

Lemma A.lO: We now finally conclude that the EKF is nondivergent. 

Proof: Z(t) is bounded from above and below, and we can use part (c) of the 

theorem. 
Q.E.D. 

Q.E.D (Main Result). 

. 
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